Wave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
Authors
Abstract:
The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathematical model. The components of temperature distribution, normal and tangential stress are computed at the interface and presented graphically. The effect of stiffness is shown on the resulting amplitudes and the effect of thermal is shown on the penetration depth of various waves. A particular case of interest is also deduced. Some special cases of interest are also deduced from the present investigation.
similar resources
Wave Propagation at the Boundary Surface of Inviscid Fluid Half-Space and Thermoelastic Diffusion Solid Half-Space with Dual-Phase-Lag Models
The present investigation deals with the reflection and transmission phenomenon due to incident plane longitudinal wave at a plane interface between inviscid fluid half-space and a thermoelastic diffusion solid half-space with dual-phase-lag heat transfer (DPLT) and dual-phase-lag diffusion (DPLD) models. The theory of thermoelasticity with dual-phase-lag heat transfer developed by Roychoudhar...
full textEffect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer Lying Over a Generalized Thermodiffusive Elastic Half-Space with Imperfect Boundary
The present investigation is to study the surface waves propagation with imperfect boundary between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velo...
full textElastic Wave Propagation at Imperfect Boundary of Micropolar Elastic Solid and Fluid Saturated Porous Solid Half-Space
This paper deals with the reflection and transmission of elastic waves from imperfect interface separating a micropolar elastic solid half-space and a fluid saturated porous solid half-space. Longitudinal and transverse waves impinge obliquely at the interface. Amplitude ratios of various reflected and transmitted waves are obtained and computed numerically for a specific model and results obta...
full textWave Propagation in Mixture of Generalized Thermoelastic Solids Half-Space
This paper concentrates on the reflection of plane waves in the mixture of generalized thermo elastic solid half-space. There exists quasi dilatational waves i.e. qP1, qP2, qT and two rotational waves S1, S2 in a two dimensional model of the solid. The boundary conditions are solved to obtain a system of five non-homogeneous equations for amplitude ratios. These amplitude ratios are found to de...
full textThermoelastic wave propagation in a rotating elastic medium without energy dissipation
A study is made of the propagation of time-harmonic plane thermoelastic waves of assigned frequency in an infinite rotating medium using Green-Naghdi model (1993) of linear thermoelasticity without energy dissipation. A more general dispersion equation is derived to examine the effect of rotation on the phase velocity of the modified coupled thermal dilatational shear waves. It is observed that...
full textWave Propagation in Fibre-Reinforced Transversely Isotropic Thermoelastic Media with Initial Stress at the Boundary Surface
The reflection and transmission of thermoelastic plane waves at an imperfect boundary of two dissimilar fibre-reinforced transversely isotropic thermoelastic solid half-spaces under hydrostatic initial stress has been investigated. The appropriate boundary conditions are applied at the interface to obtain the reflection and transmission coefficients of various reflected and transmitted waves wi...
full textMy Resources
Journal title
volume 2 issue 4
pages 363- 375
publication date 2010-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023